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Abstract. The paper addresses issues concerning a problem of con-
structing optimal classification algorithm. A notion of parameterized
approximation space is used to model a process of the classifier con-
struction. The process can be viewed as hierarchical searching for op-
timal information granulation to fit a concept described by empirical
data. A problem of combining several parameterized information gran-
ules (given by classification algorithms) to obtain global data description
is described. Some solutions based on adaptive methods are presented.

1 Introduction

Many practical, complex problems cannot be solved efficiently (because of e.g.
computational limitations) without any form of decomposition of them into eas-
ier subproblems. A hierarchical approach to problem solving is widely known
and used, as in case of control problem (layered learning [32]) or decomposition
of large databases in KDD (knowledge discovery in databases) [10]. Granular
computing [36] [24] [12] (a new paradigm in computer science, based on the no-
tion of information granulation) as a machine learning, machine perception and
KDD tool, also utilizes advantages of hierarchical structure.

The paper addresses issues concerning a problem of constructing optimal
classification algorithm in KDD applications. Suppose that data is stored within
decision tables [14], where each training case (elementary information granule)
drops into one of predefined decision classes. By assumption, all available infor-
mation about the universe of objects (cases) is collected in the decision table (or
information system) A = (U, A, d), where each attribute a € A is identified with
function a : U — V,, from the universe of objects U into the set V, of all possible
values on a and values vy € Vg of d ¢ A (a distinguished decision attribute)
correspond to mutually disjoint decision classes of objects. We will denote these
classes by Dy, ..., Dy, where D; C U.

The aim of data analysis is to construct a classifier (an algorithm which is
able to classify previously unseen objects as members of appropriate decision
classes) or an understandable description of data. Methods of construction of
classifiers or descriptions can be regarded as tools for the data generalization,
i.e. constructing more and more general description in terms of a hierarchy of
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information granules. Classifiers based on the rough set theory [14] [17], are
considered in the paper.

The main notion of the rough set theory is indiscernibility relation. Any
two objects ui,us € U are indiscernible by a set of attributes B C A (which
is denoted by (uj,us) € IND(B)) iff there is no attribute b € B such that
b(u1) # b(usz). Indiscernibility class of object v € U is the set of objects (denoted
as [u]p) indiscernible with wu:

[ulp ={u €U : Ypepb(u) =b(u)}

A decision reduct B C A is the minimal (in terms of inclusion) set of at-
tributes which is sufficient to discern any pair of objects from different decision
classes (supposing the whole set of attributes discerns this pair): IND(B) C
IND({d}) UIND(A). Let us define the following rough set based notions:

Definition 1 Let indiscernibility relation IND(B) be given. Upper approxi-
mation of a set X is defined as:

X={ueU: XN[up#0}
Lower approximation of a set X is defined as:
X={ueU: [upCX}

Definition 2 Rough inclusion of a set Y in X is defined as:

w(Y, X) = { il Y £0

1 otherwise

Rough membership of object x in a set X basing on a set of attributes B
is defined as :

_ XN alsl

B

Indiscernibility classes are related to different levels of information granula-
tion. Elementary granules correspond to [u] classes (based on the whole set of
attributes), every B C A corresponds to higher-level granule, which may be used
as a base for decision rule:

ar(u) =v1 Ao Aaj(u) =v; = d(u) = vg (1)

for B = {a1,...,a;}.

A notion of approzimation space, a theoretical tool for data description with
information granules is presented in the next sections of the paper. A general
composition scheme of data models (regarded as approximation spaces) into one
classifier is presented as well.

The reader can find more details on the important role of approximation
spaces in the process of information granule construction in Chapter ?7.



Adaptive aspects of combining approximation spaces 3

2 Classification algorithms

2.1 Approximation spaces

A notion of approzimation space (see, e.g., [21], [15], [22], [23], [25], [26], [27],
[4]) may be regarded as an extension of the rough set theory. It is a tool for
describing concepts not only in terms of their approximations, but also in terms
of similarity of objects and concepts (see e.g., [15], [25], [23]). The notion of
approximation space defined below is an extended form of definitions known
from the literature (for more information see also Chapter ?? and [20]).

Definition 3 Approzrimation space is a tuple AS = (U, I, R,v), where:

U - a set of objects;

I:U — PU) - a function mapping every object from U into a subset
(called neighborhood), where Ve w € I(u)

R CPU) - a family of subsets of U (interpreted as a set of templates, or
information granules, which are used to describe a concept)

v:PU)xPU) — [0,1] - a function (interpreted as a degree of inclusion
of subsets of U ), where (cf. [26], [23]):

1. VAQU V(A,A) =1
2. VAQU V(@,A) =1
3. VA,B,CQU V(A, B) =1= I/(C,B) > Z/(C, A)

An approximation space determines a language of describing concepts in U.
It is useful especially in case of vague, inaccurate and incomplete description
of data. Function I expresses an idea of indiscernibility of objects (a result of
incompleteness of objects’ description), whereas family R determines a way of
generalizing information about objects (which allows us to deal with inaccurate
and vague data). R may be defined e.g. by using language L of formulas basing
on descriptors a;(u) = v as atomic formulas (for a € A, v € V,,) and operation
“A”. In this case [27]:

Rp={ro : a€L} (2)
where r, C U corresponds to semantics of formula « in set U.

A goal of KDD process in both descriptive and predictive sense is to provide
the best approximation of (one or more) concept D C U basing on a known data,
by optimal information granulation. In case of prediction task the approximation
takes a form of a classification algorithm — a function mapping vectors of values
of conditional attributes into the set of decision classes {Dq, ..., D}. Selected
decision class D; C U is described by AS as a rough set with upper and lower
approximation given by:

Di= U =R

ReR : RND;#0

b= |J R

RER : RCD;
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Definition 4 Let Ay = (U, A,d) be a decision table (training data set) and
AS = (U,I,R,v) be an approzimation space, where Uy C U. Let D C P(U) be a
partition of U onto disjoint decision classes D = {D1, ..., Dy}, and let functions:

0:R—={0,1,2,....k}
where k = |D| and:
& ({0,1,....k} x [0,1))" — {0,1, ..., k}
be given. Classification algorithm based on AS and o, P is a mapping:
CAAS,D,Q,@ U — {(Z), Dl,DQ, ceey Dk}
defined as:

CAas,pew(u) = ((o(R1),v(I(u), R1)), ... (o(Rn),v(I(u), Rn)))  (3)
where n = |R|. (We will omit subscripts AS, D, o, ® for simplicity).

Typically, a given test object u is matched against templates from family
R (e.g. the left hand sides of decision rules) and the best matching R € R
is selected. Then the most frequent decision class in R is taken as a result of
classification of w. In most cases g is defined as:

[ argmaz;=1. k(v(R, D;)) for max;—1 ,(v(R,D;)) >0
o(R) = {@ otherwise (4)
If an object can be matched to more than one template R, the final answer

is selected by voting:

(o1, 20)s o (v 2)) = {(Cz)l’l‘gmal'izluk(zjﬁnz v;=i Tj) z}" 3j9;yj>:00 (5)

for n = |R|, i.e. given a set of partial answers v; and corresponding coefficients
x; one should select the most popular answer (in terms of the sum of ;). The
coefficients may be regarded as support of decision, credibility or conviction
factor etc. In case of formula 3 it is the coefficient of relevancy of template R;,
i.e. degree of inclusion of the test object in R;.

Given template R may belong to upper approximation of more than one
decision class. The conflict is resolved by function p. Alternatively, the definition
of classification algorithm may be extended onto sets of decision classes or even
onto probability distributions over them:

CA:U — A

where AF denotes k-dimensional simplex: AF = {z € [0,1]F : Zle x; = 1}.
In more general case the classification algorithm may take into account a degree
of inclusion of an object u in a template R as well as inclusion of R in decision
classes.
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2.2 Parameterized approximation spaces

The notion of a parameterized approximation space was introduced [18] [35]
to provide more flexible, data-dependent description language of the set U. By
AS; we will denote' an approximation space parameterized with a parameter
vector & € Z. The problem of optimal classifier construction is regarded as
an optimization problem of finding optimal é € =, i.e. of finding a vector of
parameters such that ASé generates optimal (in a sense of e.g. cross-validation
results) classification algorithm. Parameter £ is often used to maintain a balance
between generality of model (classifier) and its accuracy.

Example 1 Approximation space based on the set of attributes B C A of infor-
mation system A = (U, A,d) (cf. [26]). Let:

I(u) = [u]a
R=A{lulg : ueU}
V<X17X2> :/,L(X]_,Xg)

for X1, Xo C U, where p is rough inclusion function (def. 2). Then AS =
(U,I,R,v) is an approzimation space related to a partition of set U into indis-
cernibility classes of relation IN Dp(B). If we assume that B is a decision reduct
of consistent data table A, then the family R corresponds to a set of consistent
decision rules (i.e. for all R € R there is a decision class D; such that R C D;).
Every template R € R corresponds to a decision rule r of the form of conjunction
of a;(u) = v; descriptors, where a; € B, v; € V,,.

Now, let ASp o where B C A and « € [0,1], be a parameterized approzima-
tion space defined as follows (cf. [37] [39]):

I(u) = [u]a
R=A{[ulp : ueU}

_ X Xo) if (X0, Xo) >
v(X1, Xa) = {0 otherwise

A classification algorithm based on ASp o works as follows: for any test object
u € U, find a template R matching it (i.e. a class of training objects identical to
u with respect to attributes B), then check which is the most frequent decision
class in a set R. If the most frequent decision class D; covers at least a of R
(i.e. w(R,D;) > «), object u is classified as the member of D; (i.e. o(R) = i).
Otherwise, it is unclassified.

A goal of the above rough set based adaptive classification algorithm is to
find such parameters (B, «) that the approximation space ASp . generates the
best classifier. One can see, that with parameter B we adjust generality of the
model (the smaller B is, the more general set of rules is generated, but also
the less accurate rules we obtain). On the other hand, parameter « adjusts a

! The notion of parameterized approximation space is regarded in literature as ASg 4 =
(U, Iy, vs). Notation used in this paper is an extension of the classical case.
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degree of credibility of obtained model: for &« = 1 there may be many unclassified
objects, but only credible rules are taken into account; for small « there may be
no unclassified objects, but more objects are misclassified.

Example 2 Let p be a metric over the set of objects U divided onto disjoint
decision classes D = {D1,..., Dy }. For each w € U and for test data set Uy let
Ou,p be a permutation of {1,..,|U1|}, such that:

1<i<j <ULl & p(u,uq, i) < p(UUs, ()

fOT Ug, , (i) Yoy ,(5) e .
Let KNN, : U xN — 2Ut be a function mapping each object u to a set of its
k nearest neighbors according to metric p:

KN N, (u, k) = {tg, (1), s U (k) }

Let Iy ,(u) = kNNy(u, k) for a given k, let R = {R C U : |R| = k}
and v(X1,X2) = p(Xy1,X2) (c¢f definition 2). Assume that ¢ and & are de-
fined by equations 4 and 5. Then AS = (U, I, R,v) is approxzimation space and
CAups,poe i a classification algorithm identical with the classical k-nearest
neighbors algorithm. For each test object u we check its distance (given by a
metric p) to all training objects from Uy. Then we find k nearest neighbors (set
I ,(u)) and define template R = Iy (u). Object u is then classified to the most
frequent decision class in R.

Let n = |A| and w € R™. Let p,, be the following metric:

pu(ur,uz) = wilag(w) — a;(us)|
i=1

The approximation space defined above may be regarded as the parameterized
approzimation space ASy . = (U, It p,, R, V), based on k nearest neighbors and
metric py,. It is known that proper selection of parameters (metric) is crucial for
k-NN algorithm efficiency [2]).

3 Modeling classifiers as approximation spaces

Efficiency of classifier based on a given approximation space depends not only
on domain-dependent information provided by values of attributes, but also on
its granularity, i.e. level of data generalization. Proper granularity of attributes’
values depends on knowledge representation (data description language) and
generalization techniques used in classification algorithm. In case of data de-
scription by an approximation space AS = (U,I,R,v), the generalization is
expressed by a family R of basic templates (granules) which form a final data
model.

Some classification methods, especially these based on decision rules of the
form 1, act better on discrete domains of attributes. Real-valued features are of-
ten transformed by discretization, hyperplanes, clustering, principal component
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b,

by

Fig. 1. Linear combination of two attributes and its discretization.

analysis etc. (cf. [6] [9] [11]). One can treat analysis process on transformed data
either as a modeling of new data table (extended by new attributes given as a
function of original ones) or, equivalently, as an extension of model language.
The latter means, e.g. change of metric definition in k-NN algorithm (example 2)
or extension of descriptor language in rule based system to interval descriptors
“a(u) € [ei,¢i41)”-

An example of a new attribute construction method was presented by the
author in [29]. A subset of attributes B = by,...,b, C A is selected, then an
optimal (in a sense of some quality measure) linear combination of them is
constructed by evolution strategy algorithm:

h(u) = arby(u) + ... + ambm ()

where @ = (a1,...,a;n) € R™ is a vector of coefficients (assume ||[@| = 1).
Note that every linear combination h corresponds to one vector of size n =
|A]. An approximation space is based on a set of attributes containing a new
one, being a discretization of h (see figure 1). If the process of constructing
classification system involves extension of A with k£ new attributes based on linear
combinations, one may regard the process as optimization of an approximation
space AS&,OT{,...,@ parameterized by a set of parameters £ (see example 1) and
a set of vectors &f, ..., & representing linear combinations of attributes.

The more general approach is presented in [35]. A model based on a notion
of relational information system [33], originally designed for relational databases
analysis, can be easily extended to cover virtually all possible transformations of
existing data. An inductive closure A* of an information system (or a relational
information system) A is a decision table closed by an operation of adding (in-
equivalent) new attributes based on a given family of operations. Such closure A*
is always finite since there is only finite number of inequivalent attributes of any
decision table A. Hence, any classifying system based on transformed attributes
may be modeled by a parameterized approximation space AS¢ g, where ¢ is a
set of parameters (influencing e.g. a generalization level of rules) and B € A* is
a subset of attributes of inductive closure of A.
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Parameters of input granules

Fig. 2. Two general methods of adaptive combining granules: a) by weights,
b) by adjusting model parameters on the lower level of synthesis tree.

When a final set of attributes (original, transformed or created basing on e.g.
relations and tables in relational database) is fixed, the next phase of classifier
construction begins: data reduction and model creation process. In a case of
rough set based data analysis both these steps are done by calculation of reducts
(exact or approximate — see [37] [28] [35] [31]) and a set of rules based on them.
Unfortunately, the set of rules based on a reduct is too less general to provide
good classification results. A combination of rule sets (classifiers), each of them
based on a different reduct, different transformations of attributes and even on
different subsets of training objects must be performed.

4 Combining approximation spaces

One may distinguish between two main adaptive methods of granules combina-
tion (see figure 2). The first one (denoted as “a)”) is based on a vector of weights
(real numbers) used in combination algorithm to adjust somehow the influence
of a granule to a final model. In this case granules (given by classification algo-
rithms) are fixed and the best vector of weights is used just to “mix” them (see
the next section for more details). The second method (denoted as “b)”) con-
sists in changing parameters of input granules, e.g. their generality, for a fixed
combining method. In this section we will consider one of the simplest adaptive
combining method: by zero-one weights, which is equivalent to choosing a subset
of classifiers and combining them in a fixed way. This subset we will refer to as
“ensemble” of classifying agents (algorithms, represented by an approximation
space).

Assume that a classification system C'A is composed of k classifying agents,
each of them based on its own parameterized approximation space ASi, ...,
AS), and on its own subset of training examples Uy, ..., Uy (using the same I(u)
and v functions, limited to U;). Let us define an approximation space being a
combination of ASy, ..., ASk:
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Combination of approximation spaces

Testing
object

RQ / Result:
’—W voting of matching templates

Fig. 3. Combination of approximation spaces (algorithms) and a new object
classification.

Definition 5 Operation of synthesis of approximation spaces ASy, ..., ASy,
where AS; = (U;, I;, Ri,v;) and I; = I|y,, vi = v|u,, is a mapping S such that
S(ASy, ..., AS) = AS’, where AS" = (U,I,R,v) and:

U= Ui:l..k Ui
R = Ui:l..k Ri

Classification of a new object u using AS’ consists in finding all appropriate
templates R (i.e. such R that v(I(u), R) is large enough, see definitions 3 and
4). Then all values of o(R) are collected and the final answer is calculated by
voting (function @).

Supposing that subsets U; are significantly less than U, one can see that
templates (in term of subsets of objects matched) R; ; € R, are relatively small
as well. In practice one should use a method of generalizing these templates onto
the whole universe U. If, for example, a family R; is defined by a reduct B C A
(see example 1):

Ri:{[u]B : uEUi}
then it will be generalized onto:
R ={[ulp : we U}

and a definition of synthesized S(ASy, ..., ASk) = AS’ contains the following
family R:

In [35] some remarks concerning connections between above operations and
rough mereology [16] are presented. A classification system based on a family of
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approximation spaces may be regarded as a multiagent system with one special
agent for result synthesis. In case of classification of a new object u, synthesizing
agent sends to subordinate agents a request of delivery of partial descriptions
(templates R) of object u. Then, a complete description is synthesized basing
on definition 5.

Note that a set of classifying agents may work on a separate subsets Uy, ..., U,
of set U (e.g. in distributed data mining system). Suppose that a set of approx-
imation spaces ASj, ..., AS, was created basing on reducts (see example 1).
Each AS; is composed of a set of decision reducts, each of them related to one
template R € R; (R is a set of objects matching the left hand side of the rule)
and a decision value d = p(R). We tend to obtain the optimal synthesis of ASj,
...y ASy, basing on a measure ¥ of classification algorithm quality.

Let S(ASy,...,AS,) = AS’, where AS" = (U,1,R,v). Suppose that:

U= Ui:l..n Ui
R = Ui:lun ,R’l

for AS; = (U;, I, Ri,v). The space AS’ is composed of all agents (approximation
spaces) from the family ASj, ..., AS,; our goal is to choose such subset J =
{j1, -, 4151} that corresponds to synthesized approximation space:

AS; = S(AS;,, ..., AS; ) (6)

providing optimal classification algorithm C'A 45, . Let Posg(C A) and Negg(C A)
denote a number of testing objects from table B properly and improperly (re-
spectively) classified by C'A. Let ¥ be a quality measure based on classification
results on B, satisfying the following conditions:

POS]B(CAl) C POS]E(CAQ) AN NegB(CAl) = Negm;(CAg) = LP(CA1) < W(CAQ)
Posp(CA;1) = Posp(CAz2) N Negp(CAy) = Negp(CAz2) =
= (U(CA)) < U(CAy) < |J1| > |J2])

(7)

where CA; = CAASJ17 CAy = C’AASJ2 and Jy, Jy are subsets of agents. The
above conditions mean, that if two subsets of agents achieve the same results on
a test table B, we would prefer the smaller one.

Assume that CAag, is based on a voting function @ such that:

Mivi=oVo,=0)A (3 v =v) = &((v1,1), ..., (vg, 1)) = v (8)

The following fact is true for families of classifying agents (cf. [35]):

Theorem 1. Let a quality function ¥ (meeting conditions 7) be given. Suppose
ASy, ..., AS, are approzimation spaces (classifying agents) based on reducts.
A problem of finding optimal subset of agents (according to the function W) is
NP-hard.
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Proof: A similar result (for a problem formulated in slightly different way)
was presented in [34]. We will show that any minimal binary matriz column
covering problem (known to be NP-hard) can be solved (in polynomial time) by
selecting optimal subset of agents for a certain data table and set of classifying
agents. Let B = {b;;} be a n x m binary matriz to be covered by minimal set of
columns (suppose there is at least one “1” in every row and column).

Let A = (U, A, d) be an information system such that every row of the matriz
B corresponds to a pair of objects from U, every column of B corresponds to one
attribute from A (hence |A| =n, |U| = 2m). Let attributes’ values be defined as
follows:

ai(ugj,l) =2 — bij
CLZ'<’IL2J‘) =2 Qbij
d(uj) = j mod 2

where j = 1.m, i = 1.n. The set U of objects is partitioned into two decision
classes Dy and D .

Let us define a family of n approximation spaces based on subtables: A; =
(Ui,A7d), xS {1,..,71}, where U; = {UQj eU: bij = ].}U{UQJ',l elU: bij = ].}
Let AS; = (U;, I, R;,v) be an approzimation space based on the subtable A; and
subset of attributes B; = {a;} (which is a reduct of A;):

I(u) = [u]a
R = {[U]BL tue UZ}
v(X1, X2) = u(X1, X2)

The set U; contains these pairs of objects uaj, ug;—1 which correspond to rows
B covered by column i. Let AS; be an approximation space based on J (equation
6). We will prove that classification algorithm CAag, classifies correctly each
object from U iff J corresponds to column covering of B. Let uy be an object from
U (suppose, without loss of generality, that k is even, k = 2i). Let R; = ;¢ ; R;
be a family of templates of synthesized approximation space ASjy. Note that for
any R € R;:

’lLQiGRGRj <~ bij:]-

hence, as J corresponds to a covering of B, there exists a template R which
matches the object ui. Note that for even numbers of objects:

[u2i]B;, = Do
where ug; € Uj;. Hence:
UQZ'GRERJ' — Q(R):O

Every rule based on a template R € Ry is deterministic, therefore for any
voting function @ (which meets the condition 8) the object uy will be classified
correctly. The same holds for odd k (in this case o(R) = 1).
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Classification algorithm
% V\ﬁ\ voting, subset selection

lassifying agents
reducts finding
Preprocessed attributes
m Tidentity, discretization, linearization, clustering etc.
o o  Attributes

Fig. 4. Hierarchical construction of classifying algorithm from granules (descriptors,
approximation spaces). Small circles with arrows denote adaptable parameters of
information granules (or transforming/combining them).

(approx. spaces)

Suppose that J corresponds to a set of columns which is not a covering of
B. In this case there exists a row i not covered by any of selected columns and
object ug; is not contained by any U; for j € J. The object ug; does not match
any template from Ry, so it will not be classified correctly.

There was proven that there erists a bijection between ensembles (subsets)
of classifying agents (which classifies correctly all objects from A) and coverings
(subsets of columns) of matriz B. Note that (by assumption 7) if there are many
ensembles which classify every object in U, a function W will prefer the smaller
one. Hence optimal subset of agents corresponds to the minimal covering of B.
This completes a construction of (polynomial) transformation of matriz covering
problem to the problem of selection of optimal subset of agents, which proves NP-
hardness of the latter.

5 Adaptive strategies of constructing classifiers

KDD process [5] consists of several stages; some of them may be performed au-
tomatically (some preprocessing steps, data reduction, method selection, data
mining), whereas the others require an expert knowledge (understanding ap-
plication domain, goals of analytic process, selecting an appropriate data set,
interpreting and utilizing results). One of the important fields in KDD research
is to develop methods of automatization of possibly many steps of KDD process,
by using e.g. automatic feature extraction, data reduction or algorithm selection
(via parameterization). These methods are often based on adaptation paradigm.

Let us consider an automatic classification system based on the KDD scheme.
We will construct the classification algorithm step by step, by optimizing infor-
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Fig. 5. Classification results (vertical axis) and number of agents in an ensemble (hor-
izontal axis) — DNA_splices and primary_tumor data sets.

mation granulation used at each level: feature extraction and preprocessing, data
reduction and generalization, synthesis of the final classifier (see figure 4). Some
of these steps are known to be NP-hard, e.g. optimal decomposition problem
[11], optimal reduct finding (in a sense of its length or other measures, also in
case of approximate or dynamic reducts [31] [35]), selection of optimal ensembles
of agents (see above and [34] [35]). Approximate adaptive heuristics (e.g. based
on evolutionary metaheuristics) should be used to optimize these steps.

A practical (partial) implementation of a classification system described on
figure 4 was presented by author in [35]. On the lower level (feature extraction)
evolutionary algorithms are used to create optimal linearization of attributes or
new features based on relational database (cf. section 3). The process may be
regarded as an optimization of weights in case of linearization, or as a selection
(by 0-1 weights) of the best new attribute from the inductive closure of database.
There are another potential spaces of structures of new attributes, based on both
supervised and unsupervised learning methods (clustering, PCA, discretization;
feature extraction methods used in case of complex input objects: time series
analyses, pattern recognition etc.), which match the general scheme (fig. 4).

The rough set based rule induction system is used at the generalization stage
of the algorithm. A group of adaptation based evolutionary (hybrid) algorithms
for the reduct finding create a complete approximation space (by providing a set
of rules as a source of templates forming R family) parameterized by approxima-
tion coefficients in case of approximate reducts [30]. The reduct finding process
can be regarded as an optimization of 0-1 coefficients used in combining elemen-
tary granules (based on single attributes) into more complex ones (described by
the approximation space).

The next step in the hierarchy depicted on figure 4 is concerned with creating
optimal ensembles of classifying agents. The problem is NP-hard (see theorem 1);
results of practical experiments confirm that increasing the number of agents in
ensemble does not necessarily lead to enhancing classification results (see figure
5 and [34]). In [35] a genetic algorithm is used to find an optimal subset of agents.
Chromosomes (binary coding) represent subsets of agents and fitness function is
calculated by basing on classification results on an additional testing subtable.
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There are two main conditions to regard an algorithm as the adaptive one
[1]: first, the algorithm should be parameterized (able to change itself); second,
the criterion of parameters’ optimization should be based on algorithm’s effi-
ciency. In the case of adaptive scheme presented above (figure 4) every level of
the hierarchical granule combination process is parameterized — either by weights
(adjusting the method of combining granules) or by granules’ parameters. The
optimization process of these parameters (e.g. fitness function in case of genetic
algorithms) at each level is based on an approximation (estimation) of the final
classifier performance. In some cases the estimation is based on results for an
additional test sample (e.g. in case of optimization of ensemble of agents [34]), at
other levels one should use more indirect approximation. In case of adaptive sys-
tem described in [35] both new features (e.g. given by linearization) and reducts
are optimized by a probabilistic-based quality measure (predictive measure [33])
estimating the final classifier quality indirectly. The popular criteria of the clas-
sifier optimization, based on the minimum description length principle [7], lead
to even more indirect approximation.

One may notice an interesting analogy between figure 4 and neural networks
[13] [18]. In the case of multilayer feed-forward artificial neural net a model
of input-output dependency is built as a combination of a number of linear
(parameterized) and nonlinear functions. The adaptation process (implemented
e.g. as a backpropagation algorithm) is based on adjusting parameters (weights)
basing on the model prediction error, propagated downward the net. There is
no direct way to adopt this scheme to the general case of adaptive rule-based
classifier since there is no general methods of error propagation known in the
discrete case (although some heuristics are used in this case). The most universal
(but time-consuming) adaptation scheme is to collect new cases together with
the correct answers and to rebuild the whole classification system or just a part
of it (e.g. a new ensemble of agents) using the new data.

6 Results and conclusions

The paper describes a general scheme of modeling a process of classification sys-
tem construction using a notion of information granule. The process starts with
a set of elementary information granules based on single attributes. The first
level of adaptive process of classifier construction is a preprocessing of the ini-
tial attributes: discretization (which means generalization of several information
granules into one), linearization (combining several attributes using optimal in
some sense linear combination of them; the final information granule is a com-
bination of a set of granules based on a set of attributes) and other techniques.

The next level of the hierarchical process is to combine information granules
derived from the original attributes into approximation spaces — collections of
information granules of higher order. Rough set theory is the tool for the gen-
eralization of descriptors (granules based on single attributes) onto the sets of
rules.
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Data|Size (training table) k-NN C4.5 Result
sat_image 4435 x 37 90.6 85.0 91.05
letter 15000 x 17 95.6 88.5 96.00
diabetes 768 X 9 67.6 73.0 73.30
breast_cancer 286 x 10 73.1 71.0 72.84
primary_tumor 339 x 18 42.2 40.0 39.43
Australian 690 x 15 81.9 84.5 86.34
vehicle 846 x 19 72.5 75.2 68.61
DNA_splices 2000 x 181 85.4 92.4 95.29
pendigits 7494 x 16 97.8 98.28

Table 1. Experimental results compared with two popular classifiers. Column “Result”
contains a number (percent) of properly classified test objects.

The last level of the process described in the paper is to combine a set
of information granules (sets of rules, classifying agents) into one classification
system and to resolve conflicts between them. A problem of optimal subset of
agents selection is proven to be NP-hard and a genetic algorithm is proposed to
solve it approximately.

Since many of the problems concerning constructing and combining informa-
tion granules are proven to be NP-hard, approximate heuristics should be used to
obtain good results. The adaptive paradigm is the base of algorithms described
in the paper. All the steps of granules’ combination are parameterized and some
algorithms of parameters’ optimization are presented. Quality measures based
on (estimated) efficiency of classification of new cases are proposed.

The adaptive classification system described above was partially implemented
by author [35] [29] [34]. Results of experiments on some benchmark data tables
are presented in table 6.

Further research is needed in many detailed aspects of the described process.
A regular examination of adaptive strategies of parameters optimization (espe-
cially in case generalization parameters, not only weights) should be performed.
Although many parts of the process are successfully implemented by author,
there are still no experimental results concerning the whole, fully adaptive al-
gorithm. An integration of some methods described in the paper with RSES —
rough set based data analysis system [19] — is to be done in the near future.
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