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Abstract. Application of rough set based tools to the post-surgery sur-
vival analysis is discussed. Decision problem is defined over data related
to the head and neck cancer cases, for two types of medical surgeries.
The task is to express the differences between expected results of these
surgeries and to search for rules discerning different survival tendencies.
The rough set framework is combined with the Kaplan-Meier product
estimation and the Cox’s proportional hazard modeling.

1 Introduction

Analysis of medical data requires decision models well understandable by medical
experts. The theory of rough sets [4] provides knowledge representation which
is well understandable for the medical experts. A number of valuable rough set
based applications to medical domain is known from the literature [1, 2].

We analyze data about medical treatment of patients with various kinds
of the head and neck cancer cases. The data, collected for years by Medical
Center of Postgraduate Education in Warsaw, consists of 557 patient records
described by 29 attributes, reduced – after consultation with medical experts
– to 7 columns. Except the dates, important conditional attributes are well-
defined symbolic attributes. On the other hand, decision problems are defined
over especially designed attributes, which are of a complex structure. It enables
focusing in the foregoing analysis on the complex decision semantics, having a
clear interpretation of the conditional part of decision rules. Thus, this data set
seems to be perfect for learning how complex decision semantics can influence
the algorithmic framework and results of its performance.

The main topics of the paper are the following: (i) Given statistical meth-
ods used in the medical survival analysis, like the Kaplan-Meier’s product-limit
estimate and the Cox’s proportional hazard model [3], find descriptions of pa-
tient groups with different survival estimates. (ii) Given information about the
type of surgery applied to each particular patient, describe patient groups with
different comparative statistics of survivals versus the surgery type chosen.



2 Rough Set Framework

In the rough set theory [4] the sample of data takes the form of an information
system A = (U,A), where each attribute a ∈ A is a function a : U → Va into the
set of all possible values on a. Given arbitrary a ∈ A and va ∈ Va, we say that
object u ∈ U supports descriptor a = va iff a(u) = va.

One can regard descriptors as boolean unary predicates and use them to con-
struct logical formulas as their boolean combinations. The sets of objects sup-
porting such combinations (supports, for short) are obtained by using standard
semantics of logical operators. The aim of the rough set theory is to approximate
concepts X ⊆ U by means of supports of boolean formulas constructed over
A = (U,A) [4, 7].

Let us consider decision table A = (U,A ∪ {d}), d /∈ A. Concepts to be
approximated are decision classes of objects supporting descriptors d = vd, vd ∈
Vd. The most widely applied formulas are conjunctions of conditional descriptors
a = va, a ∈ A, va ∈ Va. They correspond to decision rules∧

a∈B(a = va)⇒ (d = vd) (1)

where (almost) all objects, which support a = va, a ∈ B, should support d = vd.
In case of many real-life decision problems, in particular the one we are deal-

ing with, there is an issue of data inconsistency, where construction of the above
decision rules is difficult or impossible. In the rough set theory this problem is ad-
dressed by introducing the set approximations [4], generalized decision functions
and, e.g., rough membership functions [5]. In some applications decision can be
expressed as a continuous value, function plot or a compound decision scheme
(like, e.g., rough membership distribution – probabilistic distribution spanned
over the set of original decision values [9]). Then there is a need for measuring
how close two values of decision are. Such measures may be devised in a manner
supporting the particular goal we want to achieve.

Regardless of the decision value semantics, the rough set principle of searching
for approximations of decision concepts remains the same. It corresponds to the
problem of extraction of the optimal set of (approximate) decision rules from
data; in other words – the problem of construction of an approximation space [7,
10], within which the classes of objects with similar decision behavior will be well
described by conditional boolean formulas. Given decision table A = (U,A∪{d}),
we would thus like to search for such indiscernibility classes

[u]B = {u′ ∈ U : ∀a∈B(a(u) = a(u′))} (2)

that objects u′ ∈ [u]B have decision values (sets, vectors, distributions, func-
tion plots, estimates, etc.) similar to d(u), and objects u′ /∈ [u]B have decision
values being far from d(u), according to specified decision distance semantics.
Moreover, we would like to optimize and simplify the structure of such classes
(clusters, neighborhoods), to obtain possibly general description of patterns in-
cluded (exactly or to satisfactory degree) in the approximated concept (cf. [7, 9,
10]).



3 Medical Data

We consider the data table gathering 557 patients, labeled with values over
the columns described in Fig. 1, selected by the medical experts as of special
importance while analyzing the surgery results:

Operation (O) Radical (r), Modified (m)

Treatment (T)
Operation Only (oo)
With Radiotherapy (wr)
Unsuccessful Radiotherapy (ur)

Ext. Spread (E) 1 iff extracapsullar spread is observed, 0 otherwise

Stage (S) Pathological stages, denoted by 0,1,2

Localization (L) Integer codes of the cancer localization

Time Interval (I)
Measured between the date of operation
and the date of the last notification

Notification (N) Dead (d), Alive (a), No information (n)

Fig. 1. The selected attributes of medical data

The size of data, understood in terms of the number of objects and attributes,
is relatively small and thus, any – even exhaustive – approach to searching
for appropriate solutions could be applied. A question is, however, not about
complexity of the search but about the definition of the problem itself.

The main task is to show, whether the risk of modified operation is not
greater than in case of radical operation. It is an important factor, since modified
operation is less invasive and giving less side effects. According to the experts’
knowledge, a person who survives more than 5 years after surgery is regarded
as a positively supporting case, even if the same type of cancer repeats after.
We have three classes of patients: Success: those who survived more than 5
years after surgery, Defeat : those who died because of the same cancer as that
previously treated, Unknown : those who died within 5 years but because of the
other reasons and those with no data about the last notification provided.

Let us consider a new decision attribute with three values, corresponding to
the above classes. Technically, this attribute can be created by basing on Time
Interval and Notification columns. Searching for rules pointing at the Success
and Defeat decision values may provide the wanted results.

Such decision table is very inconsistent: all conditional indiscernibility classes
contain objects with all three decision values. Hence, a kind of probabilistic
analysis should be applied (cf. [1, 2, 9]). While analyzing probabilistic decision
distributions we should, however, remember that the only thing we know for
sure is that objects from Success and Defeat classes should be discerned. What
about the Unknown class? How to relate it to the others? How to adjust the
discernibility criteria in order to get well-founded results? – We try to answer to
these questions by handling decision values having a compound type, partially
symbolic (for the Success class), partially numeric (since one may be interested
e.g. in averages over the survival periods in the Defeat class), and partially
undefined (unknown), needing perhaps a kind of indirect estimation.



4 Survival Analysis

4.1 The Kaplan-Meier Product-Limit Estimate

In the studies concerned with survival analysis, especially in medical domain,
we consider two types of observations (patient records) – complete and censored.
The observation is complete if it has lasted for the period of 5 years and in that
time a repeating cancer was recorded. Otherwise, the observation is censored –
In our case the set of censored objects coincides with the sum of the Success and
Unknown classes of patients.

The Kaplan-Meier product-limit estimate (cf. [3]) is a method providing the
means for construction of so called survival function (or survivorship) S(t), given
the complete and censored observations ordered in time. It returns the cumula-
tive proportion of cases surviving up to the time t:

S(t) =
∏t
j=1

(
N−j
N−j+1

)δ(j)
(3)

where N denotes the total number of patients and δ(j) = 0 if the j-th case is
censored, and 1 otherwise (complete case). The advantage of this method is that
it does not depend on grouping of cases into intervals.

In Fig. 2 we present the plot of Kaplan-Meier product-limit estimate for our
data set (a) and estimates for groups corresponding to two considered types of
surgery (b). One can see that operations (Radical/Modified) form the groups of
patients with different survival characteristics. However, we need an automated
method of searching for decision rules pointing at possibly more distinguishable
characteristics. According to discussion at the end of Section 2, we need an
algorithm which is able to search for minimal conjunctions of descriptors enabling
to discern objects with local Kaplan-Meier curves that are far enough one to the
others. Since it’s difficult to design an appropriate decision attribute enabling
such a performance, we follow a well known statistical method for approximating
such curves, described in the next subsection.

4.2 The Cox’s Proportional Hazard Model

This is a semi-parametric method essentially based on assumption that the sur-
vival time distribution is exponential (cf. [6]). It attempts to estimate the in-
stantaneous risk of death (hazard) of each particular patient u ∈ U at time t,
by using formula:

h(t, a1(u), . . . , an(u)) = h0(t)eβ1a1(u)+···+βnan(u) (4)

where a1, . . . , an are attributes (called indicator variables), β1, . . . , βn are regres-
sion coefficients, and function h0(t) is so called baseline hazard. This model can
be linearized by considering a new attribute:

PI(u) = ln h(t,a1(u),...,an(u))
h0(t)

= β1a1(u) + · · ·+ βman(u) (5)
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Fig. 2. Kaplan-Meier estimate: a) global b) with respect to the surgery type.



Prognostic Index PI is a linear combination of existing attributes. Coefficients
β1, . . . , βn are retrieved by using linear regression with the goal of reflecting the
actual survival pattern present in the data (expressed as, e.g., Kaplan-Meier es-
timate) as closely as possible. The task is to find a collection of time-independent
variables (attributes) that, at the same time, have clear clinical interpretation
and allow the PI to be applied efficiently to making prognosis. In our experi-
ments we used 5 variables (attributes) to form PI – The first 5 listed in Fig. 1.
The choice of attributes was suggested by medical experts. By comparing the
prediction from the Cox’s model with Kaplan-Meier estimate in Fig. 2a, we no-
ticed that the choice of attributes is proper as those two plots were very close
(practically indistinguishable at a picture).

If the choice of attributes is proper, one can identify the intervals of values of
PI, which correspond to the patient groups with different survivorship patterns.
By dividing the data set into three groups with respect to the values of PI we
obtain a significant diversification of survivorship patterns, as shown in Fig. 3a.
We follow [6], where this method is considered for other type of medical data.

4.3 Prognostic Rules

Given PI-based patterns shown in Fig. 3a, we can describe efficiently particular
tendencies. We define a new decision table, where conditional attributes are, as
before, the first 5 in Fig. 1, and values of decision correspond to the above found
intervals of values of PI. By searching for decision rules within this table, we can
construct approximations of different survival tendencies. We show just three
exemplary decision rules (abbreviations are consistent with Fig. 1):

Rule 1: O = m ∧ E = 0 ∧ S = 1 ∧ L = 1⇒ PI < 0.5
Rule 2: O = r ∧ T = ur ∧ S = 1⇒ PI ∈ [0.5, 1.3)
Rule 3: O = r ∧ T = ur ∧ E = 1 ∧ S = 2 ∧ L = 1⇒ PI ≥ 1.3

(6)

The above rules are exact, with matching at the level of 54, 106 and 82 ob-
jects, respectively.1 The right sides can be recalculated in terms of Kaplan-Meier
curves corresponding to subsets of objects (patients) defined by the left sides.
We illustrate them in Fig. 3b. It leads to the following prognostic rules:

O = m ∧ E = 0 ∧ S = 1 ∧ L = 1⇒ Upper tendency in Fig. 3b
O = r ∧ T = ur ∧ S = 1⇒ Middle tendency in Fig. 3b
O = r ∧ T = ur ∧ E = 1 ∧ S = 2 ∧ L = 1⇒ Lower tendency in Fig. 3b

(7)

The proposed method is a two-step process, providing rules related to the com-
plex, Kaplan-Meier-related decision. In the first step we encode the actual deci-
sion in terms of PI. Then we recalculate the actual survivorship estimates.

1 Obviously, one can search also for inexact PI-related rules, which are regarded as
better fitting medical phenomena than exact ones (cf. [1, 2]). However, the resulting
rules are not exact by means of application to survival analysis anyway.
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Fig. 3. Application of results from the Cox’s proportional hazard model: a) Kaplan-
Meier estimate for three groups of patients, defined with respect to the values of PI;
b) Kaplan-Meier estimate for objects matching decision rules targeting these intervals.



5 Cross-Decision Rules

The task is to compare the risk of modified and radical operations. Descriptions
of groups of patients who should be treated with the particular kind of operation
are especially worth finding. According to Fig. 2, modified operations seem to
provide better results. However, this type is generally not applied to more serious
cases. We should search for groups of patients treated with both types and
compare survival characteristics between such obtained subgroups. If we are
able to find description of a set of patients, which splits onto reasonably large
subsets in terms of type of operation applied, then knowledge resulting from the
differences in survival characteristics can be informative for medical experts.

A solution would be to search for pairs of subsets with Kaplan-Meier esti-
mates as distant to each other as possible. Such estimates are difficult to compare
in a direct manner. Hence, one may consider approximations of their behavior,
like, e.g., probabilistic distributions over the values of Prognostic Index. Another
approach is to focus on percentages of successful operations. Let us explain it
by basing on an exemplary rule derived from data:

T = wr ∧ E = 0 ∧ S = 1⇒
∣∣∣∣P (success after radical) = 0.36
P (success after modified) = 0.626

(8)

It means that within the set of patients with surgeries performed after unsuc-
cessful radiotherapy, without extracapsullar spread observed and with the middle
level of pathological stage, only 36% patients treated with radical operation sur-
vives successfully while modified operation provides success in 62.6%. Let us
call this kind of knowledge representation a cross-decision rule. It describes two-
dimensional statistics related to a pair of features – the type of operation and
successful patient’s survival – similarly as in case of contingency tables [11].

The question is how to express the criteria enabling automatic extraction
of descriptors discerning between different behaviors of such two-dimensional
statistics. We propose to extend the distance-based approach to approximate
discernibility between probabilistic distributions [9]. For a given u ∈ U , let us
consider probabilities of success of radical and modified operations over its A-
indiscernibility class [u]A, where A = {T,E, S, L}. They take the following form:

R(u) = |{u′∈[u]A:O(u′)=r∧Suc(u′)}|
|{u′∈[u]A:O(u′)=r}| M(u) = |{u′∈[u]A:O(u′)=m∧Suc(u′)}|

|{u′∈[u]A:O(u′)=m}| (9)

where Suc(u) denotes that surgery turned out to be successful for a given u ∈ U .
Let us consider the difference D(u) = R(u)−M(u) and approximation threshold
ε ∈ [0, 1). We regard objects u1, u2 ∈ U as necessary to be discerned, iff

DD(u1, u2) = |D(u1)−D(u2)| > ε (10)

Otherwise, we allow putting objects together, as matching the same rule. It
provides a method for searching for object-based rules by keeping only these
descriptors a = a(u), which are necessary for discerning pairs satisfying (10).



Fig. 4 provides characteristics of groups of patients in terms of decision rules.
It relates these rules to each other, as being generalizations for higher and coun-
terexamples for lower approximation thresholds. This way of visualization re-
mains analogous to methodology based on information maps [8]. We show only
these combinations of descriptors, which are irreducible at the level at most
ε = 0.2 and – moreover – such that the subsets of objects supporting each of
both types of surgeries are at least of cardinality 10. There are 11 rules satisfying
such requirements. Each rule is labeled with: description of its premise, number
of patients treated with two considered surgery types within the set of objects
matching the rule, and probabilities of success of these surgeries, conditioned by
the premise. Rules are connected with arrows, leading to more specified descrip-
tions, irreducible in terms of (10) for some thresholds ε > 0.2.

6 Conclusions

Application of rough set based tools to the post-surgery survival analysis of
cancer data was discussed. The task was to express the differences between
expected results of applications of two types of medical operations and to discover
rules, which discern different tendencies in survival statistics. To cope with it, the
rough set framework for generating optimal decision rules was combined with the
Kaplan-Meier product estimation and the Cox’s proportional hazard modeling.
Moreover, we proposed how to search for and visualize so-called cross-decision
rules, helpful while comparing the considered surgeries in terms of their results.
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Fig. 4. Visualization of cross-decision rules.
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