
DECISION RULES FOR LARGE DATA TABLES

Sinh Hoa Nguyen, Tuan Trung Nguyen, Lech Polkowski, Andrzej Skowron, Piotr Synak, Jakub Wróblewski

Institute of Mathematics, Department of Mathematics, University of Warsaw

Warszawa ul. Banacha 2

email: skowron@mimuw.edu.pl

ABSTRACT

Data mining and knowledge discovery in large databases in

recent years have become hot topics not only for researchers,

they have as well attraped the attention of many major companies

in the information technology domain. In this paper we present

an approach to the problem, based on rough set methods. The

main aim is to show how rough set and rough mereology theories

can be effectively used to extract knowledge from large

databases.

1. OVERVIEW

A typical database, which usually is based on the relational

model, can be viewed as a single table with columns (fields) and

rows (records). In such a base knowledge is extracted

(discovered) in the form of relationships between columns,

expressed in terms of rough set theory by decision rules.

Example: (Age = 40)  (Car = Mustang)  (Nationality =

American).

To “mine” data in a database in the view of rough set theory thus

means computing decision rules for the decision table formed

from columns and rows of the base. While tests clearly shows

that simple rule computing algorithms of the rough set theory are

fast enough to produce goods results on databases with as much

as 10,000 rows, the efficiency of these classic algorithms on

larger databases remains under question. One of the possible

solutions to the problem is the decomposition technique, which

splits the large table into smaller ones so rules may be computed

in a reasonable time, and then uses these “local” rules to

synthesize global rules for the whole base. Our paper will show

how decomposition can be done by means of intelligent splitting

algorithms and synthesizing technique based on rough

mereology.

2. LARGE TABLE DECOMPOSITION

The target of the decomposition process is to split large data

tables into smaller ones in such a way that the approximation of

global decision algorithm (related to the whole table) can be

obtained from local ones (related to these smaller tables). One of

possible strategies to generate such subtables is based on the so

called “templates”. Templates can be described as conjunctions

of attribute=value expressions and defined as follows:

Let A be an information system (data table) [5], [12]. A template

T of A is any propositional formula pi , where pi are

propositional variables, called descriptors, of form a = v, a is an

attribute of A and v is a value from the value set of attribute a.

Assuming A={a1 ,...,am }one can represent any template

T a v a vi i j jk k
    () ... ()

1 1
 by a sequence x1,...,xm

where on the position p occurs v ji
 for p = j1,...,jk and * (don’t

care symbol) otherwise. An object x satisfies the descriptor a = v

if it has value v on the attribute a. The object x satisfies

(matches) a template if it satisfies all descriptors of the template.

The length l(T) of the template T is the number of different

descriptors a = v of the template T. For any template T by

fitnessA(T) we denote its fitness i.e. the number of objects from

the information system A matching T. If T consists of only one

descriptor a=v we also write nA(a,v) (or n(a,v)) instead of

fitnessA(T). If s is an integer then by TemplateA(s) we denote the

set of all templates of A with fitness non-less than s.

We are focusing on the templates which can be used to

decompose a given decision table into simpler ones.

They should be as long as possible and at the same time should

have fitness of a reasonable size. The decomposition should be

performed until the tables attached to leaves of decomposition

tree will not be of size feasible for the developed so far rough set

strategies [5], [12], [18]. We investigate evolutionary

programming methods in searching among the decomposition

trees of a given decision table for a tree generating the set of

decision rules with the quality greater than a given threshold.

One can look on decomposition of a given decision table into

subtables corresponding to templates with large length as on

decomposition of the domain (universe) of the decision table into

suitable sub-domains. The existing rough set methods can be

applied to them to obtain decision rules for these sub-domains.

We are presenting some heuristics searching for templates. We

also report the results of computer experiments on different date

tables. The proposed heuristics has been proved by experiments

to be efficient for large data tables.

2.1. Methods for templates generation

2.1.1. MAX method. The purpose of our method is to search

for templates with large length with fitness not less than certain

lower bound s. We propose a heuristic called “Max method”. The

algorithm starts with null template e.g. template with length

equal to 0. The template is extended by successive adding

descriptors of form a = va until the fitness of the template is not

less than the fixed value s and the template can be extended. If

the current template T consists of i-1 variables then the i-th

descriptor is chosen as follows: we search among attributes not

occurring in the template T for an attribute a and a suitable value

va that the fitness of the new template T (a=va) is maximal. The

construction of the template can be realised efficiently as

follows:

Let T be the template with i-1 variables and let Ai -1 =(Ui -1 ,Ai -1

) where Ui -1 is the set of objects matching the template T and Ai--

1 consists of all attributes from A not occurring in the template.

The algorithm sorts objects from Ui- 1 with respect to the values

of any attribute. Among sorted values of all attributes it chooses

the attribute a and the value v with

maximal fitness a vA i-1
() . Below we show the

algorithm in the details.

MAX1 Algorithm

Input: A data table A=(U,A), n=U, m=Aand an integer

s.

 Output: A template T from TemplateA(s) with semi-maximal

(“large”) length (i.e. l(T) is close to max{l(T): T

TemplateA(s)}).

I. T = ;

II. while l(T) < m and fitnessA (T) >s do

III. begin

A. for any attribute a T sort objects from U with

respect to the values of a to determine the value va,

occurring in the table most frequently i.e. nA(a,va) =

max{ nA(a, v): vVa } where Va is the value set of a;

B. Choose the descriptor a =va with the highest

fitness among descriptors constructed in the previous

step i.e. nA(a ,va)=max{ nA(b, vb): bA-A(T)} where

A(T) is the set of attributes occurring in T;

C. U = the set of objects from U matching the

template a=va ; A=A-{a};

D. T = T  {a=va };

IV. end

The described algorithm allows to construct large template

efficiently but it generates only one template. We present a

modification of the MAX1 algorithm to obtain more than one

template. Instead of choosing the descriptor with the largest

fitness we consider all descriptors constructed in Step 3.1. and

choose one from them randomly according to a certain

probability. Then the descriptor a=va is chosen to add to T with a

probability:

P a v
n a v

n a v
a

a

i ai

()
(,)

(,)
 


A

A

.

The MAX1 algorithm can be modified as follows:

MAX2 ALGORITHM

I. T = ;

II. while l(T) < m and fitnessA(T) < s do

III. begin

A. for any attribute aT sort objects from U

with respect to the values of a to determine the value va,

that appear in the table most frequently;

B. Choose randomly the descriptor a = va with

the probability P(a v
n a v

n a v
a

a

i ai

 


)

(,)

(,)

A

A

C. U = the set of objects from U matching

template a=v; A=A-{a};

D. T = T  {a=v};

IV. end

Both algorithms take O(m2.n logn) time in worst case.

2.1.2. Object weights. The idea is based on setting

appropriate weights to all objects in the decision table. These

weights describe a potential ability of the object to belong to a

“good” (in a sense) template. After attaching the weights to

objects the process of the selection starts. Objects are being

chosen randomly with respect to their weights. Each time a new

object is chosen the fitness of new state is being calculated. If the

new state is better the algorithm continues, otherwise it depends

on the control variable. The algorithm uses a mechanism of so

called “mutation” i.e. some objects are drawn to be removed

once upon a time. It allows to avoid the local extrema.

First we construct a list of all objects and count their weights. It

takes the majority of the computation. Some initial objects can

be randomly chosen from data tables and weights can be attached

to them only. Next, the idea of “roulette wheel” for the random

choice of objects from the list can be applied i.e. objects with

greater weights have the better chance to be chosen. For the new

state we calculate the value of its fitness function. If the fitness of

the new state is better than that of the previous one we continue

with it; otherwise, we remain in the new state with some

probability, controlled by the variable that decreases together

with the progression of the selection process. The further the

algorithm has progressed in calculations, the smaller the

probability of choosing the worse state is. It is decided with

some frequency whether to remove a randomly chosen object

from the set of selected objects. The algorithm can be stopped in

many different ways e.g. when chosen objects give worse state

for several times or when the control variable decreased below

some threshold. During the process the template with highest

fitness is being stored in the memory.

Weights of objects reflecting potential similarity of

objects [8]. Let A=(U, A) and xU. For any yU, we calculate

g i x i y ix y, { : () ()}  i.e. the number of attributes that have

the same value on x and y. This number denotes the “closeness”

of y to x. Then, for any attribute aA, we calculate

w x ga x y

y a x a y

() ,

: () ()





 and finally the weight

w x w xa

a A

() ()



 . We have w x g x y

y

() , 2
.

Weights of objects derived from attribute value

frequency. Let A=(U, A) and xU. Then for any aA let

wa(x)=nA(a, a(x)) and w x w xa

a A

() ()



 .

2.1.3. Attribute weights. The idea is very similar to “object

weights” method however appropriate weights are being attached

to all attributes in the decision table. Within an attribute each

attribute value has its own weight too. In the process of

searching for templates first the attributes and next the attribute

value are being chosen randomly with respect to their weights.

Each time new attribute and attribute value is chosen the fitness

of obtained template is being calculated. If the new template is

better the algorithm continues, otherwise it depends on the

control variable. The algorithm uses a mechanism of “mutation”

i.e. with some frequency a randomly chosen fixed attribute value

in the template is being changed to “don’t care” (‘*’) value. It

allows to avoid the local extrema of fitness function.

Weights. Let A=(U, A), m=|U|, n=|A|. We can order the

attribute values of a according to nA(a, v) for any aA. Then by

vi
a

 we denote the i-th value of attribute a in this order. In this

sense the value v a
1 is the most often occurring value of a in A. If

nA(a,v)=nA(a,u) for uv we randomly choose which value is

higher in the order. By wA(a) we denote
m

i n a v
i

a

a

i

V





 (,)

1

. As

one can easily see wA(a)(0,1]. For any value u of attribute a

we can define the weight of u as w u
n a u

m

a


()
(,)

 . We have

w ua
 ()(0,1] and w va

v Va





 () 1 for any aA.

Attribute weight algorithm. The following scheme

describes the steps of the algorithm.

I. Initialise template

II. i = 1, k = 1, fitness = 0

III. while not STOP do

A. randomly choose r  [0,1);

B. if r < wA(ai) and template(i) = ‘*’ do

1. choose an integer l  {1,…,|Vai
|} such that

w v r w v
a

k

l
a a

k

l
ai

k

i i

k

i
 







  

1

1

1

() () ;

2. set template(i) = v l

ai ;

3. Calculate new_fitness for the template;

4. if new_fitness  fitness * fit_coeff then

template(i) = ‘*’ else fitness = new_fitness;

store(template);
C. if k = mutation_coeff then change randomly

chosen value of template and k=0;

D. i = i + 1; k = k + 1;

E. if i = n then i = 1

One can be interested in searching for templates with maybe

smaller fitness but with a high number of fixed attribute values.

Then the initial template can be set for example by performing

operations from Step 3.1. to Step 3.3. In other cases the most

important may be the quality of template with no matter to the

“length” of templates. Relatively to this the initial template can

be set with “don’t care” (‘*’) values. The fitness_coeff and

mutation_coeff have to be set experimentally. They allow to

obtain different kinds of templates: with small or high number of

fixed attributes.

2.1.4. Genetic algorithm. Note, that every template can be

represented by a binary string of length N (indicating which

attributes are fixed) and any object matching it (called a base

object). This representation will be the most natural in problems

as follows: “Find the largest template matching the object x1”.

There are also other questions, such as: “Find the globally best

template in this information system”, that can be reformulated in

terms of finding the best template matching one specific object.

In fact, the algorithm described below finds a good template for a

given base object.

Assume given a base object xb ; we are looking for the best

template matching xb. To do this, we use the following greedy

algorithm:

1. Let i := 1, T = { *, *, … * } and let (b1 ... bN)= (a1 ... aN

) be an ordered list of attributes - the order is represented by

a permutation .

2. Calculate the size of the template T.

3. Add the value bi (xb) on attribute to T, i := i + 1.

4. Repeat from 2 until i = N.

5. Choose the best result found in step 2.

Every locally maximal template can be found using this

algorithm - the result depends on the order of attributes. The time

complexity of this algorithm can be evaluated as O(N2m). The

algorithm described above can be optimised in many ways: for

example, objects that do not match the base object in any

position can be deleted from database (a pre-processing). Our

goal is to find the proper order of attributes and we use genetic

algorithms to do this job. Our chromosome will be a permutation

 of length N.

There is no simple and fast way to generate globally good

templates by this algorithm - generating the best template for any

object is rather unacceptable for the long databases. On the other

hand, a globally good template means that it matches many

objects from the database (in examples presented below - up to

60%). Note, that if we choose any of them as our base object, we

find global optimum. So, we can simply choose randomly as

many objects as possible and calculate the templates - the largest

of them will probably be a global optimum.

2.1.4.1. Function of fitness. The value of the fitness

function, F(T) , depends on two parameters viz. the number OT

of objects in the data table matching the given template (base

object excluded) and the number AT of fixed positions:

F(T) = OT  AT.

Calculating F(T) is the most time-consuming operation, but some

techniques can be used to make it faster. For example, we can

store fitness values in memory and try to recall them instead of

calculating them again.

2.1.4.2. Selection method. When the fitness function is

calculated for each chromosome, the selection process begins.

First, we normalise the fitness values:

 F(x)

 FN(x)= 

  F(x)

Next, we use these new values FN(x) as a probability

distribution, and we choose the new population randomly, using

this distribution (applying the "roulette wheel" algorithm).

The results were slightly better in the case when the elitist

strategy was used as an additional technique. The best individual

was copied to the new population without changes.

2.1.4.3. Crossing-over. Crossing-over affects chromosomes

selected to reproduction with the probability of Pc = 0.7. We use

the method called PMX (Partially Matched Crossover): the

parent permutations are cut at two random points and the

fragments are combined and treated as a list of transpositions.

Then the parent permutations are treated by these transpositions.

2.1.4.4. Mutations. Probability of a mutation on a single

position of the permutation was chosen as 0.1. Mutation of the

permutation means a single transposition of two elements like in

 { 1 2 3 4 5 } { 1 3 2 4 5 }.

In the table we also present some results obtained by application

of genetic algorithms [6], [13]. This algorithm generates

templates almost included in decision classes i.e. generates

approximate rules with dominating decision [3]. The results of

experiments are showing that the presented heuristics are efficient even for large data tables.

2.2. Results of experiments (HP Apollo 735)

Size of

decision

Genetic method Object weights Attr. Weights MAX1 method MAX2 method

table

objattr

Time

min:sec

Result

objattr

Time

min:sec

Result

objattr

Time

min:sec

Result

objattr

Time

min:sec

Result

objattr

Time

min:sec

Result

objattr

19261 0:01 722 0:01 306 1302 0:01 1302 0:01 1302

 0:01 783 0:01 288 953 0:01 953 0:01 953

 0:04 783 0:01 259 =0:01 704 0:01 704 0:01 704

 0:04 1411 259 0:01 455

 0:03 2520 2311 0:01 276

 0:04 1822 0:01 227

 0:04 1026 0:01 178

47133 0:01 2403 0:01 2004 0:01 2194 2413 2573

 0:01 2403 0:01 1615 0:01 1745 2164 2194

 0:05 2154 0:01 1426 0:01 1576 1635 1745

 0:01 529 0:01 1197 =0:01 1436 =0:01 1576

 0:01 3111 0:01 1048 1048 1197

 0:01 3012 0:06 639 639 639

 0:04 3611 4310 4710

 0:04 2812 3011 3511

225490 0:03 868 0:01 9427 15312 10112

 0:10 1565 0:01 7436 14513 9113

 1:38 12210 0:01 6147 0:05 5048 12017 7617

 0:01 4858 0:05 5756 =0:05 10420 =0:05 6220

 0:01 3878 0:07 4281 4465 1269

 0:01 3995 0:07 4082 2899 1073

 0:01 33105 20120

 0:01 21146

 0:01 14210

1553416 139292 139302 0:03 139302 139302 139302

 =0:05 78683 68773 0:02 78693 78693 78693

 58253 34054 0:06 52844 52844 52844

 0:16 139292 =0:35 15275 0:04 39055 =0:07 39015 =0:07 39015

 2:39 139292 5307 0:07 23416 23416 23416

 2028 0:04 12277 12277 12277

 1039 0:07 6808 6808 6808

 0:07 3589 3589 3589

3. GLOBAL DECISION SYNTHESIS.

Once the process of decomposition has been successfully

performed, we obtain a collection of smaller decision tables to

which existing rough set tools (i.e. reduct computing and rule

generation) can be applied in order to extract knowledge in the

form of rules.

The global decision then can be computed from local knowledge

of the subtables using various strategies. Among the simplest

ones is majority voting where the decision value assigned to a

object is the value predicted by the largest number of rules from

subtables.

However, experiments with practice data have indicated a need

for more advanced synthesis strategies, which are being

investigated in our ongoing research. They are discussed in the

following section.

4. Advanced alternative strategies for global decision

synthesis.

4.1. Tolerance between templates. The basic idea of

introducing a tolerance between templates, as a generalization

operator, is to “propagate” relevant attribute patterns so that

knowledge extracted from subtables may be used to approximate

the characteristics of a greater collection of objects. The

tolerance relation can be defined as follows:

Let A=(U,A) be a decision table and u={(a1,v1),…, (ak,vk)}

and v={(b1,w1),…, (bk,wk)} ai ,bi  A, vi,wi  VA be samples on

A. We say that u and v are in a tolerant relation  iff there exist a

function f: A A such that f({a1,…,ak}) = {b1,…,bk} and

f(ai)=bj)  (vi=wj). By uA we denote the set of objects of A that

match u, i.e. uA={xU: u  InfA(x)}. Then we can define the set

of objects that match u in a tolerant sense as (u)A = { xU: v

uv and xvA}.

Having found a set of templates we calculate the sets of objects

that match them in tolerant sense. Such sets then can be used to

cover the decision classes of the original data table and therefore

to approximate the global decision. The problem of how to

choose tolerance relations that give as accurate an approximation

of the global decision as possible is one of the main subjects of

our future projects.

4.2. Multi-level decision synthesis. In this approach the

global decision is not computed directly from the smaller

decision function induced by generated subtables, instead the

calculation will be done in a hierarchical, tree-like manner where

the decision functions on a upper level a computed from those on

lower levels by some sets of operators, the decision subtables

being the leaves and the global decision being the root. Once

again, there are many methods of how to computer the decision

on a upper level from those that are below. We propose a general

paradigm to this problem by means of the mereology theory as

follows.

The idea of a mereological approximative synthesis of a solution

is based on the observation that in many cases a solution to a

problem posed under uncertainty is synthesized from "pieces"

characterized by the degree in which they are close (or, are

"parts" of) to some standard components of the solution, the

latter often "ideal" i.e. not known fully to the problem solver. To

characterize the degree of being a part, we introduce a function

M (called a rough inclusion [9]) with M(x,y) = the degree in

which x is a part of y. Usually, the range of M is the unit interval

[0,1] and M(x,y)=1 means that x is a full (possibly improper)

part of y. In particular, the function M(T,D) = |[T] [D]| / |[T]|

generates a rough inclusion (see [10]); it is used to measure

fitness of a template T in approximating a decision class D.

The encouraging quality of approximations used with employing

this rough inclusion compels us to sketch the idea of further

investigations on approximating decision classes via templates

along rough mereological lines. Our approach has to do with a

sequential exhausting of a decision class D by a sequence of

templates (Ti)i . We can regard the successive steps of this

approach as a sequence of agents associated to random choices

of objects in D and working cooperatively in the way described

above.

More general mereological schemes of synthesis are constructed

in the following way (cf. [13]). Given a hierarchy (assume a tree)

of agents, any agent ag is equipped with its universe of objects

U(ag), a rough inclusion M(ag), a language (say, of unary

predicates) L(ag) interpreted in U(ag), and a set St(ag) of

standard objects (standards). Given a requirement  , the agents

negotiate the condition ( (ag), st(ag),  (ag)) for any ag such

that: (i) st(ag) St(ag); (ii) st(ag) satisfies  (ag); (iii) for any

ag and its children ag(1),..,ag(k) (if there are any), if

M(ag(i))(x(i), st(ag(i)))  (ag(i)) for i = 1, 2,.., k, then the

parent ag constructs from x(1),.., x(k) the (unique) object x such

that M(ag)(x, st(ag))  (ag); (4) for the root agent R of the

hierarchy, if M(R) (x(R), st(R))))  (R) then x(R) satisfies the

requirement  in satisfactory degree.

Given a database D, a test family {D(ag): ag} of subtables

(agents indexed) is selected; standards at any agent ag are

template covering of D(ag) found by means of experiments

described above. For a new object x, the distance (ag) from x to

standard templates are evaluated and a hierarchical merging

system of D(ag) is created. At each merging step, e.g. ag1 and

ag2, new template coverings for the table D(ag1)D(ag2) are

found based on the fitness function. The object x is classified on

the basis of distances from x to the final standard templates

found for D0 = {D(ag):ag}.

Let us observe that this interplay between the mereological

synthesis theory and the approximation problem is mutual: not

only the general mereological synthesis scheme is applicable

here in a natural way but also the experiments with real data

tables will prove the validity of the theoretical scheme and allow

for experimental testing of theoretical conjectures concerning the

propagation rules for uncertainty coefficients. Observe that two

extreme levels: the data table D and leaf subtables of D are given

but the intermediate level where findings from subtables are

synthesized presents a theoretical and practical challenge. Our

research project is directed towards this goal.

5. CONCLUSION

A general schema for extracting rules from large data tables is

discussed. We propose a method to attack the difficult problem

of knowledge discovery from large databases. Experiments so far

conducted have confirmed that satisfactory results can be

obtained in reasonable time. Further theoretical research to

extend the presented concepts is being pursued and experiments

on very large databases are scheduled.

6. REFERENCES

[1] Fayyad U..M., Uthurusamy R., 1995. Proc. of the First

International Conference on Knowledge Discovery and

Data Mining, Montreal, August 20-21, 1995, AAAI Press.

[2] Holland J.H., 1992. Adaptation in natural and

artificial systems. The MIT Press, Cambridge.

[3] Mannila H., Toivonen H., Verkamo A.I., 1994.

“Efficient Algorithms for Discovering Association Rules”.

In: U. Fayyad and R. Uthurusamy (eds.): AAAI Workshop

on Knowledge Discovery in Databases, pp. 181 - 192,

Seattle, WA, July 1994.

[4] Michalski R., Tecuci G., 1994. Machine Learning. A

Multistrategy Approach. Morgan Kaufmann, San Mateo,

CA.

[5] Mollestad T., Skowron A., 1996. "A Rough Set

Framework for Data Mining of Propositional Default

Rules". To appear in: Proc. ISMIS-96.

[6] Pawlak Z., 1991. Rough Sets: Theoretical Aspects of

Reasoning about Data. Kluwer, Dordrecht.

[7] Piatetsky-Shapiro G., 1991. "Discovery, Analysis and

Presentation of Strong Rules". In: Piatetsky-Shapiro G.

and Frawley W.J. (eds.): Knowledge Discovery in

Databases, pp. 229 - 247, AAAI/MIT.

[8] Polkowski L., Skowron A., Synak P., Wróblewski J.,

1995. Searching for Approximate Description of Decision

Classes, manuscript.

[9] Polkowski L., Skowron A., 1996. "Rough

Mereological Approach to Knowledge-based Distributed

AI". In: J.K. Lee, J. Liebowitz, Y. M. Chae (eds.): Critical

Technology. Proc. of The Third World Congress on Expert

Systems, pp. 774-781, Seoul 1996, Cognizant

Communication Corporation, New York.

[10] Polkowski L., Skowron A., 1996. "Rough mereology:

A New Paradigm for Approximate Reasoning". To appear

in: Journal of Approximate Reasoning

[11] Quinlan J.R., 1993. C4.5: Programs for Machine

Learning. Morgan Kaufmann, San Mateo, CA.

[12] Skowron A., 1995. "Synthesis of Adaptive Decision

Systems from Experimental Data". In: J.Komorowski, A.

Aamodt (eds.): SCAI-95. Proc. Fifth Scandinavian

Conference on Artificial Intelligence, pp.220-238, IOS

Press, Amsterdam.

[13] Skowron, A., Polkowski, L., 1995. "Rough

mereological foundations for analysis, synthesis, design

and control in distributive system", Proc. Second Annual

Joint Conference on Information Sciences, pp. 346-349,

Sept. 28 - Oct. 1, 1995, Wrightsville Beach, NC.

[14] Skowron A., Rauszer C., 1992. "The discernibility

matrices and functions in information systems". In: R.

Słowiński (ed.): Intelligent Decision Support. Handbook

of Applications and Advances of the Rough Sets Theory,

pp.331 - 362, Kluwer, Dordrecht.

[15] Smyth P., Goodman R.M., 1991. "Rule Induction

Using Information Theory". In: Piatetsky-Shapiro G. and

Frawley W.J. (eds.): Knowledge Discovery in Databases,

pp. 159 - 176, AAAI/MIT.

[16] Toivonen H., Klemettinen M., Ronkainen P., Hatonen

K., Mannila H., 1995. "Pruning an Grouping Discovered

Association Rules". In: Mlnet: Workshop on Statistics,

Machine Learning and Knowledge Discovery in

Databases, pp. 47 - 52, Heraklion, Crete, April 1995.

[17] Uthurusamy R., Fayyad U.M., Spangler S. 1991.

"Learning Useful Rules from Inconclusive Data". In:

Piatetsky-Shapiro G. and Frawley W.J. (eds.): Knowledge

Discovery in Databases, pp. 141 - 157, AAAI/MIT.

[18] Ziarko W.(ed.), 1994. Rough Sets, Fuzzy Sets and

Knowledge Discovery, Workshops in Computing, Springer

Verlag & British Computer Society.

