
DECISION RULES FOR LARGE DATA TABLES 
 

Sinh Hoa Nguyen, Tuan Trung Nguyen, Lech Polkowski, Andrzej Skowron, Piotr Synak, Jakub Wróblewski 

Institute of Mathematics, Department of Mathematics, University of Warsaw 

Warszawa ul. Banacha 2 

email: skowron@mimuw.edu.pl
  

ABSTRACT 

Data mining and knowledge discovery in large databases in 

recent years have become hot topics not only for researchers, 

they have as well attraped the attention of many major companies 

in the information technology domain. In this paper we present 

an approach to the problem, based on rough set methods. The 

main aim is to show how rough set and rough mereology theories 

can be effectively used to  extract knowledge from large 

databases. 

 
1. OVERVIEW 

A typical database, which usually is based on the relational 

model, can be viewed as a single table with columns (fields) and 

rows (records). In such a base knowledge is extracted 

(discovered) in the form of  relationships between columns, 

expressed in terms of rough set theory by decision rules. 

Example: (Age = 40)  (Car = Mustang)  (Nationality = 

American). 

To “mine” data in a database in the view of rough set theory thus 

means computing decision rules for the decision table formed 

from columns and rows of the base. While tests clearly shows 

that simple rule computing algorithms of the rough set theory are 

fast enough to produce goods results on databases with as much 

as 10,000 rows, the efficiency of these classic algorithms on 

larger databases remains under question. One of the possible 

solutions to the problem is the decomposition technique, which 

splits the large table into smaller ones so rules may be computed 

in a reasonable time, and then uses these “local” rules to 

synthesize global rules for the whole base. Our paper will show 

how decomposition can be done by means of intelligent splitting 

algorithms and synthesizing technique based on rough 

mereology.  

 

2. LARGE TABLE DECOMPOSITION 

 

The target of the decomposition process is to split large data 

tables into smaller ones in such a way that the approximation of 

global decision algorithm (related to the whole table) can be 

obtained from local ones (related to these smaller tables).  One of 

possible strategies to generate such subtables is based on the so 

called “templates”. Templates can be described as conjunctions 

of attribute=value expressions and defined as follows: 

 

Let A be an information system (data table) [5], [12]. A template 

T of A is any propositional formula pi , where pi are 

propositional variables, called descriptors, of form a = v, a is an 

attribute of A and v is a value from the value set of attribute a. 

Assuming A={a1 ,...,am }one can represent any template 

T a v a vi i j jk k
    ( ) ... ( )

1 1
 by a sequence x1,...,xm 

where on the position p occurs v ji
 for p = j1,...,jk and * (don’t 

care symbol) otherwise. An object x satisfies the descriptor a = v 

if it has value v on the attribute a. The object x satisfies 

(matches) a template if it satisfies all descriptors of the template. 

The length l(T) of the template T is the number of different 

descriptors a = v of the template T. For any template T by 

fitnessA(T) we denote its fitness i.e. the number of objects from 

the information system A matching T. If T consists of only one 

descriptor a=v we also write nA(a,v) (or n(a,v)) instead of 

fitnessA(T). If s is an integer then by TemplateA(s) we denote the 

set of all templates of A with fitness non-less than s.  

We are focusing on the templates which can be used to 

decompose a given decision table into simpler ones.  

They should be as long as possible and at the same time should 

have fitness of a reasonable size. The decomposition should be 

performed until the tables attached to leaves of decomposition 

tree will not be of size feasible for the developed so far rough set 

strategies [5], [12], [18]. We investigate evolutionary 

programming methods in searching among the decomposition 

trees of a given decision table for a tree generating the set of 

decision rules with the quality greater than a given threshold. 

One can look on decomposition of a given decision table into 

subtables corresponding to templates with large length as on 

decomposition of the domain (universe) of the decision table into 

suitable sub-domains. The existing rough set methods can be 

applied to them to obtain decision rules for these sub-domains. 

We are presenting some heuristics searching for templates. We 

also report the results of computer experiments on different date 

tables. The proposed heuristics has been proved by experiments 

to be efficient for large data tables. 

 

2.1. Methods for templates generation 

 

2.1.1. MAX method. The purpose of our method is to search 

for templates with large length with fitness not less than certain 

lower bound s. We propose a heuristic called “Max method”. The 

algorithm starts with null template e.g. template with length 

equal to 0. The template is extended by successive adding 

descriptors of form a = va until the fitness of the template is not 

less than the fixed value s and the template can be extended. If 

the current template T consists of i-1 variables then the i-th 

descriptor is chosen as follows: we search among attributes not 

occurring in the template T for an attribute a and a suitable value 

va that the fitness of the new template T (a=va ) is maximal. The 

construction of the template can be realised efficiently as 

follows:  

Let T be the template with  i-1 variables and let Ai -1 =(Ui -1 ,Ai -1 

) where Ui -1 is the set of objects matching the template T and Ai--

1  consists of all attributes from A not occurring in the template. 

The algorithm sorts objects from Ui- 1 with respect to the values 

of any attribute. Among sorted values of all attributes it chooses 

the attribute a and the value v with 



maximal fitness a vA i-1
( ) . Below we show the 

algorithm in the details. 

  

MAX1 Algorithm  

Input:  A data table A=(U,A), n=U, m=Aand an integer 

s. 

 Output:  A template T from TemplateA(s) with semi-maximal 

(“large”) length (i.e. l(T) is close to max{l(T): T 

TemplateA(s)}).  

 

I. T = ; 

II. while l(T) < m and fitnessA (T ) >s do 

III. begin 

A.  for any attribute a T sort objects from U with 

respect to the values of a to determine the value va, 

occurring in the table most frequently i.e. nA(a,va ) = 

max{ nA(a, v): vVa } where Va is the value set of a;  

B.  Choose the descriptor a =va with the highest 

fitness among descriptors constructed in the previous 

step i.e. nA(a ,va )=max{ nA(b, vb ): bA-A(T)} where 

A(T) is the set of attributes occurring in T; 

C.  U = the set of objects from U matching the 

template a=va ;  A=A-{a}; 

D.  T = T  {a=va }; 

IV. end 

 

The described algorithm allows to construct large template 

efficiently but it generates only one template. We present a 

modification of the MAX1 algorithm to obtain more than one 

template. Instead of choosing the descriptor with the largest 

fitness we consider all descriptors constructed in Step 3.1. and 

choose one from them randomly according to a certain 

probability. Then the descriptor a=va is chosen to add to T with a 

probability:  

P a v
n a v

n a v
a

a

i ai

( )
( , )

( , )
 


A

A

. 

The MAX1 algorithm can be modified as follows: 

 
MAX2 ALGORITHM 

I. T = ; 

II. while l(T) < m and fitnessA(T) < s do 

III. begin 

A.  for any attribute aT sort objects from U 

with respect to the values of a to determine the value va, 

that appear in the table most frequently;  

B.  Choose randomly the descriptor a = va with 

the probability P(a v
n a v

n a v
a

a

i ai

 


)

( , )

( , )

A

A

 

C.  U = the set of objects from U matching 

template a=v;  A=A-{a}; 

D.  T = T  {a=v}; 

IV. end 

 

Both algorithms take O(m2.n logn) time in worst case. 

 
2.1.2. Object weights. The idea is based on setting 

appropriate weights to all objects in the decision table. These 

weights describe a potential ability of the object to belong to a 

“good” (in a sense) template. After attaching the weights to 

objects the process of the selection starts. Objects are being 

chosen randomly with respect to their weights. Each time a new 

object is chosen the fitness of new state is being calculated. If the 

new state is better the algorithm continues, otherwise it depends 

on the control variable. The algorithm uses a mechanism of so 

called “mutation” i.e. some objects are drawn to be removed 

once upon a time. It allows to avoid the local extrema.  

 

First we construct a list of all objects and count their weights. It 

takes the majority of the computation. Some initial objects can 

be randomly chosen from data tables and weights can be attached 

to them only. Next, the idea of “roulette wheel” for the random 

choice of objects from the list can be applied i.e. objects with 

greater weights have the better chance to be chosen. For the new 

state we calculate the value of its fitness function. If the fitness of 

the new state is better than that of the previous one we continue 

with it; otherwise, we remain in the new state with some 

probability, controlled by the variable that decreases together 

with the progression of the selection process. The further the 

algorithm has progressed in calculations, the smaller the 

probability of choosing the worse state is. It is decided with 

some frequency whether to remove a randomly chosen object 

from the set of selected objects. The algorithm can be stopped in 

many different ways e.g. when chosen objects give worse state 

for several times or when the control variable decreased below 

some threshold. During the process the template with highest 

fitness is being stored in the memory. 

 

Weights of objects reflecting potential similarity of 

objects [8]. Let A=(U, A) and xU. For any yU, we calculate 

g i x i y ix y, { : ( ) ( )}   i.e. the number of attributes that have 

the same value on x and y. This number denotes the “closeness” 

of y to x. Then, for any attribute aA, we calculate 

w x ga x y

y a x a y

( ) ,

: ( ) ( )





 and finally the weight 

w x w xa

a A

( ) ( )



 . We have w x g x y

y

( ) , 2
. 

 

Weights of objects derived from attribute value 

frequency. Let A=(U, A) and xU. Then for any aA let 

wa(x)=nA(a, a(x)) and w x w xa

a A

( ) ( )



 . 

2.1.3. Attribute weights. The idea is very similar to “object 

weights” method however appropriate weights are being attached 

to all attributes in the decision table. Within an attribute each 

attribute value has its own weight too. In the process of 

searching for templates first the attributes and next the attribute 

value are being chosen randomly with respect to their weights. 

Each time new attribute and attribute value is chosen the fitness 

of obtained template is being calculated. If the new template is 

better the algorithm continues, otherwise it depends on the 

control variable. The algorithm uses a mechanism of “mutation” 

i.e. with some frequency a randomly chosen fixed attribute value 

in the template is being changed to “don’t care” (‘*’) value. It 

allows to avoid the local extrema of fitness function.  

 

Weights. Let A=(U, A), m=|U|, n=|A|. We can order the 

attribute values of a according to nA(a, v) for any aA. Then by 

vi
a

 we denote the i-th value of attribute a in this order. In this 



sense the value v a
1 is the most often occurring value of a in A. If 

nA(a,v)=nA(a,u) for uv we randomly choose which value is 

higher in the order. By wA(a) we denote 
m

i n a v
i

a

a

i

V





 ( , )

1

. As 

one can easily see wA(a)(0,1]. For any value u of attribute a 

we can define the weight of u as w u
n a u

m

a


( )
( , )

 . We have 

w ua
 ( )(0,1]  and w va

v Va





 ( ) 1  for any aA. 

Attribute weight algorithm. The following scheme 

describes the steps of the algorithm. 

I. Initialise template 

II. i = 1, k = 1, fitness = 0 

III. while not STOP do 

A.  randomly choose r  [0,1); 

B.  if r < wA(ai) and template(i) = ‘*’ do 

1. choose an integer l  {1,…,|Vai
|} such that 

w v r w v
a

k

l
a a

k

l
ai

k

i i

k

i
 







  

1

1

1

( ) ( ) ; 

2. set template(i) = v l

ai ; 

3. Calculate new_fitness for the template; 

4. if new_fitness  fitness * fit_coeff then 

template(i) = ‘*’ else fitness = new_fitness; 

store(template); 
C.  if k = mutation_coeff then change randomly 

chosen value of template and k=0; 

D.  i = i + 1; k = k + 1; 

E.  if i = n then i = 1 

One can be interested in searching for templates with maybe 

smaller fitness but with a high number of fixed attribute values. 

Then the initial template can be set for example by performing 

operations from Step 3.1. to Step 3.3. In other cases the most 

important may be the quality of template with no matter to the 

“length” of templates. Relatively to this the initial template can 

be set with “don’t care” (‘*’) values. The fitness_coeff and 

mutation_coeff have to be set experimentally. They allow to 

obtain different kinds of templates: with small or high number of 

fixed attributes. 

 

2.1.4. Genetic algorithm. Note, that every template can be 

represented by a binary string of length N (indicating which 

attributes are fixed) and any object matching it (called a base 

object). This representation will be the most natural in problems 

as follows: “Find the largest template matching the object x1”. 

There are also other questions, such as: “Find the globally best 

template in this information system”, that can be reformulated in 

terms of finding the best template matching one specific object. 

In fact, the algorithm described below finds a good template for a 

given base object. 

Assume given a base object xb ; we are looking for the best 

template matching xb. To do this, we use the following  greedy 

algorithm: 

 

1. Let i := 1, T = { *, *, … * } and let ( b1 ... bN )= ( a1 ... aN 

) be an ordered list of attributes - the order is represented by 

a permutation . 

2. Calculate the size of  the template T. 

3. Add the value bi (xb) on attribute to T,  i := i + 1. 

4. Repeat from 2 until i = N. 

5. Choose the best result found in step 2. 

 

Every locally maximal template can be found using this 

algorithm - the result depends on the order of attributes. The time 

complexity of this algorithm can be evaluated as O(N2m). The 

algorithm described above can be optimised in many ways: for 

example, objects that do not match the base object in any 

position can be deleted from database (a pre-processing). Our 

goal is to find the proper order of attributes and we use genetic 

algorithms to do this job. Our chromosome will be a permutation 

 of length N. 

There is no simple and fast way to generate globally good 

templates by this algorithm - generating the best template for any 

object is rather unacceptable for the long databases. On the other 

hand, a globally good template means that it matches many 

objects from the database (in examples presented below - up to 

60%). Note, that if we choose any of them as our base object, we 

find global optimum. So, we can simply choose randomly as 

many objects as possible and calculate the templates - the largest 

of them will probably be a global optimum. 

 

2.1.4.1. Function of fitness. The value of the fitness 

function, F(T) , depends on two parameters viz. the number OT 

of objects in the data table matching the given template (base 

object excluded) and the number AT of fixed positions: 

F(T) = OT  AT.  

Calculating F(T) is the most time-consuming operation, but some 

techniques can be used to make it faster. For example, we can 

store fitness values in memory and try to recall them instead of 

calculating them again. 

 

2.1.4.2. Selection method. When the fitness function is 

calculated for each chromosome, the selection process begins. 

First, we normalise the fitness values: 

        F( x ) 

  FN( x )=     

        F( x ) 

 

Next, we use these new values FN( x ) as a probability 

distribution, and we choose the new population randomly, using 

this distribution (applying  the "roulette wheel" algorithm). 

The results were slightly better in the case  when the elitist 

strategy was used as an additional technique. The best individual 

was copied to the new population without changes.  

 

2.1.4.3. Crossing-over. Crossing-over affects chromosomes 

selected to reproduction with the probability of Pc = 0.7. We use 

the method called PMX (Partially Matched Crossover): the 

parent permutations are cut at two random points and the 

fragments are combined and treated as a list of transpositions. 

Then the parent permutations are treated by these transpositions. 

 

2.1.4.4. Mutations. Probability of a mutation on a single 

position of  the permutation was chosen as 0.1. Mutation of the 

permutation means a single transposition of two elements like in  

 { 1 2 3 4 5 } { 1 3 2 4 5 }. 

In the table we also present some results obtained by application 

of genetic algorithms [6], [13]. This algorithm generates 

templates almost included in decision classes i.e. generates 

approximate rules with dominating decision [3]. The results of 



experiments are showing that the presented heuristics are efficient even for large data tables. 

 

 

2.2. Results of experiments (HP Apollo 735) 

 

Size of 

decision  

Genetic method Object weights Attr. Weights MAX1 method MAX2 method 

table 

objattr 

Time 

min:sec 

Result  

objattr 

Time 

min:sec 

Result 

objattr 

Time 

min:sec 

Result 

objattr 

Time 

min:sec 

Result 

objattr 

Time 

min:sec 

Result 

objattr 

19261 0:01 722 0:01 306  1302 0:01 1302 0:01 1302 

 0:01 783 0:01 288  953 0:01 953 0:01 953 

 0:04 783 0:01 259 =0:01 704 0:01 704 0:01 704 

   0:04 1411  259   0:01 455 

   0:03 2520  2311   0:01 276 

   0:04 1822     0:01 227 

   0:04 1026     0:01 178 

47133 0:01 2403 0:01 2004 0:01 2194  2413  2573 

 0:01 2403 0:01 1615 0:01 1745  2164  2194 

 0:05 2154 0:01 1426 0:01 1576  1635  1745 

   0:01 529 0:01 1197 =0:01 1436 =0:01 1576 

   0:01 3111 0:01 1048  1048  1197 

   0:01 3012 0:06 639  639  639 

     0:04 3611  4310  4710 

     0:04 2812  3011  3511 

225490 0:03   868 0:01 9427    15312  10112 

 0:10 1565 0:01 7436    14513  9113 

 1:38  12210 0:01 6147 0:05 5048  12017  7617 

   0:01 4858 0:05 5756 =0:05 10420 =0:05 6220 

   0:01 3878 0:07 4281  4465  1269 

   0:01 3995 0:07 4082  2899  1073 

   0:01 33105    20120   

   0:01 21146       

   0:01 14210       

1553416  139292  139302 0:03 139302  139302  139302 

 =0:05 78683  68773 0:02 78693  78693  78693 

  58253  34054 0:06 52844  52844  52844 

 0:16 139292 =0:35 15275 0:04 39055 =0:07 39015 =0:07 39015 

 2:39 139292  5307 0:07 23416  23416  23416 

    2028 0:04 12277  12277  12277 

    1039 0:07 6808  6808  6808 

     0:07 3589  3589  3589 

 

3. GLOBAL DECISION SYNTHESIS. 

 

Once the process of decomposition has been successfully 

performed, we obtain a collection of smaller decision tables to 

which existing rough set tools (i.e. reduct computing and rule 

generation) can be applied in order to extract knowledge in the 

form of rules. 

The global decision then can be computed from local knowledge 

of the subtables using various strategies. Among the simplest 

ones is majority voting where the decision value assigned to a 

object is the value predicted by the largest number of rules from 

subtables. 

However, experiments with practice data have indicated a need 

for more advanced synthesis strategies, which are being 

investigated in our ongoing research. They are discussed in the 

following section.       

 

4. Advanced alternative strategies for global decision 

synthesis. 

4.1. Tolerance between templates. The basic idea of 

introducing a tolerance between templates, as a generalization 

operator, is to “propagate” relevant attribute patterns so that 

knowledge extracted from subtables may be used to approximate 

the characteristics of a greater collection of objects. The 

tolerance relation can be defined as follows: 

Let A=(U,A) be a decision table and u={(a1,v1),…, (ak,vk)} 

and v={(b1,w1),…, (bk,wk)} ai ,bi  A, vi,wi  VA be samples on 

A. We say that u and v are in a tolerant relation  iff there exist a 

function f: A A  such that f({a1,…,ak}) = {b1,…,bk} and 

f(ai)=bj)  (vi=wj). By uA we denote the set of objects of A that 

match u, i.e. uA={xU: u  InfA(x)}. Then we can define the set 

of objects that match u in a tolerant sense as (u)A = { xU: v 

uv and xvA}. 

Having found a set of templates we calculate the sets of objects 

that match them in tolerant sense. Such sets then can be used to 



cover the decision classes of the original data table and therefore 

to approximate the global decision. The problem of how to 

choose tolerance relations that give as accurate an approximation 

of the global decision as possible is one of the main subjects of 

our future projects. 

 

4.2. Multi-level decision synthesis. In this approach the 

global decision is not computed directly from the smaller 

decision function induced by generated subtables, instead the 

calculation will be done in a hierarchical, tree-like manner where 

the decision functions on a upper level a computed from those on 

lower levels by some sets of operators, the decision subtables 

being the leaves and the global decision being the root. Once 

again, there are many methods of how to computer the decision 

on a upper level from those that are below. We propose a general 

paradigm to this problem by means of the mereology theory as 

follows.  

The idea of a mereological approximative synthesis of a solution 

is based on the observation that in many cases a solution to a 

problem posed under uncertainty is synthesized from "pieces" 

characterized by the degree in which they are close (or, are 

"parts" of) to some standard components of the solution, the 

latter often "ideal" i.e. not known fully to the problem solver. To 

characterize the degree of being a part, we introduce a function 

M (called a rough inclusion [9]) with M(x,y) = the degree in 

which x is a part of y. Usually, the range of M is the unit interval 

[0,1] and M(x,y)=1 means that x is a full (possibly improper) 

part of y. In particular, the function M(T,D) = |[T] [D]| / |[T]| 

generates a rough inclusion (see [10]); it is used to measure 

fitness of a template T in approximating a decision class D. 

The encouraging quality of approximations used with employing 

this rough inclusion compels us to sketch the idea of further 

investigations on approximating decision classes via templates 

along rough mereological lines. Our approach has to do with a 

sequential exhausting of a decision class D by a sequence of 

templates (Ti)i . We can regard the successive steps of this 

approach as a sequence of agents associated to random choices 

of  objects in D and working cooperatively in the way described 

above. 

More general mereological schemes of synthesis are constructed 

in the following way (cf. [13]). Given a hierarchy (assume a tree) 

of agents, any agent ag is equipped with its universe of objects 

U(ag), a rough inclusion M(ag), a language (say, of unary 

predicates) L(ag) interpreted in U(ag), and a set St(ag) of 

standard objects (standards). Given a requirement  , the agents 

negotiate the condition ( (ag),  st(ag),  (ag)) for any ag such 

that: (i) st(ag) St(ag); (ii) st(ag) satisfies  (ag);  (iii) for any 

ag and its children ag(1),..,ag(k) (if there are any), if 

M(ag(i))(x(i), st(ag(i)))   (ag(i)) for i = 1, 2,.., k, then the 

parent ag constructs from x(1),.., x(k) the (unique) object x such 

that M(ag)(x, st(ag))   (ag); (4) for the root agent R of the 

hierarchy, if  M(R) (x(R), st(R)) ))   (R) then x(R) satisfies the 

requirement   in satisfactory degree. 

Given a database D, a test family {D(ag): ag} of subtables 

(agents indexed) is selected; standards at any agent ag are 

template covering of D(ag) found by means of experiments 

described above. For a new object x, the distance (ag) from x to 

standard templates are evaluated and a hierarchical merging 

system of D(ag) is created. At each merging step, e.g. ag1 and 

ag2, new template coverings for the table D(ag1)D(ag2) are 

found based on the fitness function. The object x is classified on 

the basis of distances from x to the final standard templates 

found for D0 = {D(ag):ag}.  

Let us observe that this interplay between the mereological 

synthesis theory and the approximation problem is mutual: not 

only the general mereological synthesis scheme is applicable 

here in a natural way but also the experiments with real data 

tables will prove the validity of the theoretical scheme and allow 

for experimental testing of theoretical conjectures concerning the 

propagation rules for uncertainty coefficients. Observe that two 

extreme levels: the data table D and leaf subtables of D are given 

but the intermediate level where findings from subtables are 

synthesized presents a theoretical and practical challenge. Our 

research project is directed towards this goal. 

 

5. CONCLUSION 

 

A general schema for extracting rules from large data tables is 

discussed. We propose a method to attack the difficult problem 

of knowledge discovery from large databases. Experiments so far 

conducted have confirmed that satisfactory results can be 

obtained in reasonable time. Further theoretical research to 

extend the presented concepts is being pursued and experiments 

on very large databases are scheduled.        
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